CHAPTER III

FRAENKEL -~ MOSTOWSKI - SPECKER MODELS

This chapter is devoted to the study of the socalled "Bermutation
Models". They provide a method for obtaining independence results.
It was for the purpese of obtaining the relative consistency of

1 (AC) and negations of some weakened forms of (AC) that A.A.Fraen=

kel first introduced the notion of a permutation model:

[20] A.FRAENKEL: Der Begriff "definit" und die Unabh&ngigkeit des
Auswahlaxioms; Sitzungsberichte d. Preussischen Akad.
Wiss.,Phys.Math.XKlasse,v0l.21(1922)p.253-257.

[21] A.FRAENKEL: Ueber eine abgeschwdchte Fassung des Auswahlaxioms;
J.S.L. 2(1937)p.1-27. [Abstracts: C.R.Acad.3ci.Paris vol.
192(1931)p.1072, and: Jahresberichte der DMV 41(1931)
part 2, p.8s8l.

At that time (1922) the distinction between Mathematics and Meta-
mathematics was not yet clear enough and Fraenkel's proof fails

in so far as questions concerning the absoluteness of certain no-
tions are not treated. This failing has been observed and corrected
by A.Mostowski, partly in collaboration with A.Lindenbaum:

[84] A.LINDENBAUM - A.MOSTOWSKI: Ueber die Unabhingigkeit des Aus-
wahlaxioms und einiger seiner Folgerungen; C.R.Soc.Sci.
Lettr.Varsovie, ClasselIII, vol. 31(1938)p.27-32.

[64] A.MOSTOWSKI: Ueber die Unabh#ngigkeit des Wohlordnungssatzes
vom Ordnungsprinzip; Fund.Math.32(1939)p.201-252.

Fraenkel has acknowledged the corrections and refinements obtained
by Mostowski (see Fraenkel's review of [54] in the J.S.L.4(1939)p.
30-31). The major deficiency of the Fraenkel-Mostowski method is
that it does not apply to "ordinary" set theories, id est, to set
theories in which all the elements are sets and in which the axiom
of foundations holds. The Fraenkel-Mostowskl method is applied to
set theories which admit the existence of "Urelements”, id est
objects which are not sets (have no elements and are distinct from
the empty set #). These set theories are obtained from "ordinary"
set theories (e.g. ZF) what essentially amounts to a weakening of
the extensicnality and dropping the axiom of foundation. Such a
set theory, if obtained from ZF, will be called ZFU (the "U"™ indi-
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cating: with urelements). The FM~method has been ameliorated by
E.P.Specker. His method, the socalled FMS-method (Fraenkel-Mos~
towski~Specker method), applies to set theories which permit the
existence of unfounded sets, id est, they permit the existence of
sequences of the type
seeee8 X Bl E X3 € X2 E Xy {n e w)
or other similar phenomena such as x = {x}:
{82] E.SPECKER: Zur Axiomatik der Mengenlehre (Fundierungs- und
Auswahlaxiom); Zeitschr.f.math.Logik und Grundlagen 4.
Math.vol.3(1957)p.173~210.

The set theories to which the FMS-method applies are obtained e.g.

from ZF by weakening the axiom of foundation only. For a discussion
of these methods we refer our reader to the book "Foundations of Set
Theory" by A.Fraenkel - Y.Bar-Hillel (Amsterdam 1958)p.u49-54, and to

[#9] A.LEVY: The Fraenkel-Mostowski Method for Independence Proofs
in Set Theory; in: Symposium on the Theory of Models (Am-
sterdam 1965J)p.221-228.

In the sequel we present Specker's method. We start with a proof
that the existence of "reflexive" sets x = {x} is relative consis-
tent.

A) THE INDEPENDENCE OF THE AXIOM QF FOUNDATION

The notion of a well-founded set (ensemble ordinaire) was first
considered by D.Mirimanoff (L'Ens.Math.19(1917)p.37-52,p.208~-217,
and vol.21(1920)p.29-52). A.Fraenkel (Math.Ann.86(1922)p.230~237)
has added to the axioms of Zermelo an axiom of restriction (Axiom
der Beschranktheit) asserting that every set is well-founded but
the formulation was unfortunately not within the ZF-formalism
(Frankel formulated it in a way similar to Hilbert's Vollstédndig-
keitsaxiom of the "Grundlagen der Geometrie% 1899, see also Fraen-
kels paper in the Journal f.Math.i41(1911) p.76)}.

It was Johann von Neumann (1925) who replaced Fraenkel's "axiom"

by the axiom: x # 4 = \Jy(y e x ~x Ny =9), (axiom(VII) in our
list of ZF-axioms). J.v.Neumann's axiom excludes the existence of
Yextraordinaire” sets as it was the aim of Fraenkell's axiom, and

is formulated within the ZF-formalism . Later Zermelo independently
introduced this axiom and introduced the name "Axiom der Fundierung"
for it (Zermelo, Fund.Math.16(1930) see p.31). The consistency of
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the axiom of fundierung (VII) with ZF° was proved by J.v.Neumann.
The consistency of 1 (VII) with ZF® was first proved (independently,
using different methods) by P.Bernays [J.S.L. 19(1954) see p.B83-84 -
this result was announced by Bernays already in 1941(J.S.L. 6, see
p.10] and by B.P.Specker in his Habilitationsschrift, Ziirich 1951,
see {821 . The method for obtaining the indepence of the Fundierungs-
axiom (VII) has been modified and simplified in the last 14 years

by many authors le.g. L.Rieger: Czechoslovak Math.J.7(1957)p.323-
357; P.H&jek: Zeitschr.math.Logik u.Gr.Math.11(1965)p.103-115;
M.Boffa: Zeitschr.math.Logik u.Gr.Math.14(1968)p.32%-334]. A number
of nice independence results is contained in:

[4] M.BOFFA: Les ensembles extraordinaires; Bull.Soc.Math.Belgique,
vel.20(1968)p.3-15.

We shall present Bernays' independence proof but with the modifica-
tions due to L.Rieger and M.Boffa.

Permutations of the universe. Let ®(x,y) be a ZF-formula having

no free variables except x and y. Suppose ® satisfies the following

conditions:
(P.1) 3ZF F /X(/\,f§[¢(x,y) ~ (x,z) *y = zl
(P.2) ZF } /\x /\y Azlfb(x,y) ~ ®(z,y) * x = z]

(r.3) zF F A Voc,y o~ A Vo,y.
x Y y X

Then ¢ is said to define a permutation of the universe V. In this
case define the class~term F = {{x,y }; ®(x,y)} and {x,y? € F ¢y =
F{x). Define a binary predicate GF by

x €y pog F(x) ey * \/;[¢(x,z) ~z € vyl.

For a ZP-formula ¥ let Rep(F,¥) be the formula obtained from ¥ by
replacing the symbol € by QF at all places of occurrence.

Theorem 1. Suppose T = {{x,y }; ®{x,y)} defines a permutation of the
universe, then Rep(F,-) is a syntactic model of ZF® in
ZF, id est ZF } Rep(F,Y¥) for every axiom ¥ of ZF°.

Proof: Ad(0): The real empty set # = F(a) satisfies the requirements
of the relativized axiom of Null-set. Ad(I): suppose thal z €p x ©
z €p ¥y for all z. We prove x C y: Take a ¢ x. By (P.3) a = F(b)

for some b. Hence F(b) ¢ %, i.e. b €p X. The hypothesis yields

b EF y, hence a = F(b) ¢ y. The part y C x is proved analogously.

By the axiom of extensionality of ZF we get x = y as desired.
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Ad(II): Let x and y be given. Put z = {F(x),F(y)}. Then u GF z®
F{u) € z. Hence either F{u) F{x) or F(u) = F{y). But the latter
holds by (P.2) iff either u = x or u = y. Ad(III): Let x be
given and put y = {F(z); \/U(F(z) € u ~ F(u) € x)}; then
Z EF vy “’V;(z EP u -~ uEP x) as required. The set y exists by
virtue of the axioms of union and replacement of ZF. A4(IV):
Define {(in ZF) a function f with domain w by: f(0) = 8, £(1) =
{F(ECON}, f(n+1) = f(n) U {F(£f(n))}. Finally, define x = {F(£f(i));
i e w}. We have that z €, x ¢+ z = f(i) for some i and f(i) Cff(i+1)=

F
(1) UF{f(i)}F , where CF expresses proper F-inclusion

i.e. "Inclusion" with respect to EF). Hence x satisfies

the requirements of the relativized axiom of infinity.

Ad(V): For a set x the power-set in the sense of the model is the
set y = {F(2); t € x}. In fact: z €y 2 C x (by (P.2)), there-
fore: u €_ 2 EF y * F(u) € 2 ~ z € x, Hence F(u) € x, i.e.

u EF X. ég(VI): Let I'(x,y) be a ZF-formula with precisely two free
variables x and y and let ¥(x,y) be Rep(F,Il'(x,y)). Suppose that
for every x there is precisely one y such that ¥(x,y). Let a be
any set. Define a* = {?—1(X); X € a}. By the axiom of replacement

(of ZF) corresponding to ¥ and a* there is a set b* such that
/\y[y g b* © \/u(u € a* ~ ¥(u,y)i

Define b = {F(y); y & b*}, then b satisfies the relativized repla-
cement axiom corresponding to ¥ and a. Thus the theorem is proved.

Theorem 2: Suppose F = {{x,y }; @(x,y)} defines a permutation of
the universe V. If (V,e ) satisfies the axiom of choice,
then <V,€F ) satisfies the axiom of choice too, id est:
ZF + (AC) b Rep(F, (AC)).

Proof: Consider a set s such that s is "not empty" with respect to
QP and such that the F-elements of s are not F-empty and pairwise
F-disjoint (the suffix "F" in front of a npotion N indicates that
the corresponding "notion in the sense of the model™ is meant, id
est: Rep(F,N)). Define

a* = {{x; F(x) ¢ y}; F(y) € a}

a* is a set of non-empty, pairwise disjoint sets (with respect to €).
By (AC) there is a set b* such that: b* Ny is a singleton for
each y € a*. Now b = {F(x); x ¢ b*} isa F-choice set for a, i.e.

satisfies the condition:
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1
/\y{y € a *\/Z(ZE? b~z €L 218

This proves theorem 2.

Definition. A set x is called reflexiv iff x = {x}, id est iff
the condition /\y(y £ X ¢y = x) holds. The existence

of reflexive sets contradicts the axiom of Fundierung.

Theorem 3. If ZF® is consistent, then ZF® + \3/%% = {xJ)is also
consistent.

Proof. Let &(x,y) be the formula (x = 0 Ay = 1) v (x = 1 Ay = )V
(x #0 ~x #¥1 ~ x = y). Hence % defines a permutation of the
universe such that only the ordinals 0 and 1 are interchanged. Let

F be the one-to-one function {{x,y} ; ™ x,y)}. Then F(1) = 0 €1 =
F{0), hence 1 €& 1 and 1 = {1}F. Hence Rep(F,-) is a syntactic model
of ZF9 + Vb/xx = {x} in ZF. The relative consistency follows from

a theorem in chapt.I, section D. page 9, g.e.d.

Corollary: If ZF is consistent, then ZF® + "negation of the axicm
of foundation” is consistent and ZF® + (AC) + "negation

of the axiom of foundation" is consistent too.

This follows from theorems 2 and 3 and G&del's consistency result.
Hence the axiom of foundation is independent from ZF° + (AC).

Our next question iswhether the axiom of foundation can be
viclated in such a form where there exists a countable set of re-
flexive sets or where there exists a proper class of reflexive sets
which is in one-to-one correspondence with the class of all ordi-
nals Both questicns have been answered in the positive way by
E.P.Specker (see also M.Boffa, Zeitschr.math.Logik u.Gr.d.Math.
14(1968)p.329-334 and [&4]).

Theorem 4: If ZF is consistent, then ZF° + "there exists a set R
of reflexive sets such that R is equipotent with w" is
consistent too.

Procof: Consider the following permutation F of the universe:

F(x) = {x} 1ff x ¢ w*, F(x) = y iff x = {y} for y ¢ w* and F(x) = x
in all other cases; here yp* is difined to be w - {1} = {0,2,3,4,..}.
For x ¢ w*, {x} is never in w* and T is well-defined. In particu-
lar we have: F(0) = 1, F{(1) = 0, F(2) = {2}, F({2}) = 2, etc.

Hence 1 €p 1 (since F(1) = 0 ¢ 1), id est: {0} EF {0}. Further

{2} €p {2}, {3} & (3}, etc. and obviously F(x) € w* » x = {F(x)} ={x§F.
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We shall show that there is a F-correspondence between the
F-set of reflexive sets n = {n}F for n # 1 and w.

The unordered pair in the model-sense of x and y is {F(x),
F(y)}. The ordered pair in the sense of the model is hence

{x,y )P = {F({F(x)}), F({F(x), F(y)}}
The natural numbers in the sense of the model are the sets f(0) = 8,
f(n+1) = £(n) UV {F(f(n))} (see the proof of th.1). The function

g = {{(f(n). {n+2})F; n € w}F = {F £(n), {n+2})F; n € w}

is a function in the F-sense between Wy = {f(n); n € m}F = {F(£(n));
n € wl, the F~set of F-natural numbers, and some F-reflexive sets

{n+2} = {F({n+2})} for n € w.

Corollary: If ZF is consistent, then ZF® + "there exists a proper
class R of reflexive sets such that there is a one-to-one
correspondence between the class of all ordinals and R"

is consistent too.

Proof. Consider the following permutation of the universe:

F(x) = {x} iff x € On*, F(x) = y iff x = {y} for y € On* and F(x) = x
otherwise. Here On is the class of all ordinal-numbers and

On* = On - {1}. Now proceed as in the procof of th.4,

Remark. By theorem 2 it is possible to add (AC) to ZF® in th.u4 and
its corollary above. Further, in the model of theorem 3 the (GCH)
holds. Hence the axiom of foundation is indepentent from ZF® + (AC). +
(GCH). This cannot be strengthened by adding V = L, since obviously
the axiom of foundation follows from V = L. For further consistency
results like these proved in theorems 3 and 4 and its corollary
consult the papers of M.Boffa (those already cited and Boffa's

papers in the C.R.Acad.Sc.Paris vol.264(1967)p.221-222,v0l.265(1967)
p.205~-206, vol.266(1968)p.545-546, vol.268(1969)p.205). In particular
Boffa's second C.R.-paper contains the following fine result:

Theorem (M.Boffa): Let (s,<) be any partially ordered set. If ZF is
consistent, then so is ZF° + (AC) + "there is a transitive

set t such that (s,<) and {t,e } are isomorphic".

In particular {(5,<) can be taken to be any linearly ordered set
(e.g. a dense totally ordered set).

It is known that in ZF + (AC) + "There are strongly
inaccessible cardinal numbers "the class of Grothendiek-universa is
totally ordered by € (see G.Sabbagh, Archiv d. Math. 20(1969)p.449~
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456). U.Felgner has shown that it is consistent with ZF® + (AC) +
/\x\/;(; <3 ~ In(y)) that given any partially ordered set (s5,<)
there is a set t of Grothendiek=-universa., such that {s,<?} and
(t,C) are isomorphic (see U.Fg.Archiv d.Math.20(1969)p.561-566:[17],
and M.Boffa - G.Sabbagh [5] .

B) THE FRAENKEL-MOSTOWSKI~SPECKER METHOD

A weak axiom of foundation, compatible with the existence of re-

flexive sets.

Let A be a set of reflexive sets. Define Reo (A) A,

R, (A) =L}{P(RB(A)); 8 < al for a > g, and W(A) L){Ru(A); a € On}
One proves that a € g ~» R (A) C RB(A) and that all sets R {(A) are
transitiv. It is not provable that \/X(V = W(x)) (see the corollary

in the preceeding section!) but it is consistent with ZF° (same proof

as in the consistency proof for V =}V ). In W(A) it holds that

every set is wellfounded relative to A:

(WF) Axiom of weak foundation: VA( /\xx * 4§ > Vy(y ExX ~(yNx=08v
VA3y={ﬂ)H.

All models considered fromnow on (in this chapter) will satisfy

this axiom. From now on we assume the axiom \/X(V = W(x)) ~
/\y(y e x+yv = {y})).

Automorphisms of the universe. An autcomorphism of V 1s a one-to-one

mapping T from V onto V such that x € yv < 1(x) € 1(y).

Let A be a basis of reflexive sets for V, id est V = W(A), and let
7 be any permutation of A (i.e. one-to-one mapping from A ontoc A),
then 7 can be extended in a unique way to an. automorphism w* of
V. This is done by induction: suppose we have extended 7 so that

7 acts on all sets of Ra(A}' Let x € Ra i{A} and define

7({x) = {n{y); v ¢ x} '
The uniqueness follows from the fact that a notion of rank, p{x),
can be defined: p(x) = Min{a; x C RQ(A)}. This shows that every
automorphism 1 of V is uniquely determined by a permutation of A.
If ¢ permutes A and 7* is its extension, then

(" 5H* = (¢! and (mymg )" = mima.

Hence the group of permutations of A and the automorphism group
of V (written as Aut(V,e)) are isomorphic and we need not to dis-

tinguish between them.

Filters of subgroups. If G is any (multiplicatively written) group,

H a subgroup of G, and g € G, then g'lﬁg is called a conjugate
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subgroup of G, conjugate with respect to H.

Definition. A non-empty set F of subgroups of a group G is called
a filter {(of subgroups of G) iff the following three
conditions hold:

(1) HeFPAageG— gbiﬂg g F.
(ii) Hy € T A Hy €H) A H, €£38-H, ¢ F.
(iii) Hy e F A H ¢ F=» H, NH, ¢ F.

Here H, < H; means that H;is a subgroup of H; . We shall show

that every filter T of subgroups of any subgroup G of Aut(V,e)

determines a model of ZF°%.

Definition of the model MW G,F}. Let G < Aut(V,e) and F a filter
on G. For any set x let H{x] = {1t ¢ G; 1"x = x} where 1"x =

{t(y); v € x}. Obviously HIx] is a subgroup of G. Again let C(x)
denote the transitive closure of x, i.e. C(x) = {x} U x VU LJx U,..
Now define M = {x; /\y(y € C{x) =~ Hlyl ¢ F)}.

Sets of the "model"PYLIG,F] are thus elements of M and the member-
ship-relation of LI G,F] is the one of the whole universe V. We
shall prove that

WL =2Wlie,rl = (M,e

is a model of ZF?. But first we list some properties of {(M,e ).
(a) M is a transitive class.
(B) If x is a subset of M, then x ¢ M iff H[x] ¢ F.

Theorem (Specker [82]p.196): (In ZF® + V = WA WUG,F] & (M,e)
is a model of ZF°.

Proof. Ad(0): Since H{#] = G ¢ F and # CM, 8 ¢ M and 8 satisfies
the axiom of Null-set inJJ(.

Ad(I): The axiom of extensionality inW{ follows from (a).
Ad(II): If x and y are sets of ¥, then H[x] € T and Hly] € F.
Since F is a filter: H[x] N Hly] € F. But H[x] NHIyl] <H[ {x,y}],
hence Hf {x,y}] e F. By (8) is {x,y} a set of ¥L.

Ad(III): Let x be a set of W; hence HIx] ¢ F. We shall show that
B x] <HUx1. Ux = (25 \/y(z €y e x)}l. For v € H{x]: z e y € x
t{(z) ¢ 1(y) ¢ 1(x) since Tt is an automorphism. But t e H[{x] =+
T({x) = x and 1t(y) = y' ¢ x. Thus: \/y(z €Y E X) ”'\VZ(T(Z) £y €
for 1T € H[x). Hence 1(Ux) = t{z; \/v(z ey e x)} = {1(2);

\/y(z eyvex)} clUx. But similar 1(Ux) [« {Ux follows. Hence
(if 1 denotes the identical mapping):

Ux = 1(Ux) = toolUx) € «(Ux) € Ux.

<>

x)
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Thus t ¢ H[Ux]. Now by (ii) of the filter-definition HIUx] € F.

By (B) Ux e M.

Ad(IV): By induction one shows that M contains all ordinals (using
(II) and (III) already proved). Hence w € M and w satisfies the
requirements of the axiom of infinity.

Ad(V): Let x be any set. We shall show that P(x) N M ¢ M. If y C x
and T € Hixl, then T(y) € x; hence T(Pk)) C P(x). Moreover, if

y ©x and y € M, then 17(y) € M (see the lemma 1 below) and therefore

T(P(x) N M) € P(x) N M.

The same holds for T -.Hence T(P(x) N M) = P(x) N M (as above) and
Hl x] € H[P(x) N Ml. Thus P(x) N M e M. The set P(x) N M
satisfies the requirements of the power-set axiom relativized to WL.
Instead of proving directly that the replacement schema is true in
the model we shall prove first that the Aussonderungsschema holds

in it. Let @(x,xl,...,xn) be a ZF-~-formula with no free variables
other than XpXa 5o o sX We have to show that if XigeoosX Yy € M
then there is a set z &€ M such that

/\X[x € 29 X €y A Rel(M,¢(x,x1,...,xn))]

First one shows by induction on the length of ¢ that for every

T € G: XpXigeonX € M~ (Rel(M,@(x,x,,..,xn)) hid Rel(M,¢(T(x),.,T(xn))))-
In our present case, since x;,..,xn,y € M, thus

HE xa1 ] N.,H[xn} ,Hlyl € F, hence H[x;]ﬂ..ﬂH[xn] NHlyl = H ¢ T,

we can assume that all of Xt 5. e5X 5y are Ho ~symmetric (i.e. invariant

under automorphisms 1T € Hg). Consider the set
z = {x; xevy a Rel(M,¢(x,x1,...,xn))}.

In order to show thatz ¢ M it is by (B) enough to prove that z is
Ho ~symmetric. Then He < Hl[z], hence by (ii) Hlz] € F which implies
by () that z is in M.

Hence take 7 e Ho and x € z. Then x € y and 1(x) € ©(y)=y since
Ho S H{yl by definition of He. Also, since X € z we have
Rel(M,@(x,x,,...,xn)), hence Rel(M,¢(T(x),T(x.),...,T(xn)). But
since T € Hy & H[xil (1 <1 <n), T(Xi) = X5 and therefore
t(x) € z. Altogether: 1 € Ho » 1(z) C z. Hence 1(2) = z (proved

as in (III)), and z is He-symmetric, g.e.d.

So far we have shown, that Y0 = WIIE,F] is a model of Zermelo-
set theory Z. In order to prove that Y satisfies the replacement-
axiom we need a lemma

Lemma 1. If x ¢ M and 1 € G, then T(x) ¢ M.
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Proof by induction on the e-relation.
x € M+ H x] € F. We claim that

Hlt(x)] =t HIx]t L.

Hence take ¢ € Hl x]. Then {?UTml)T(x) = rc(r"lf){x) = TO{x) = t(x).
Thus t01"1 ¢ H [t(x)]. It follows by (i) and (ii) of the filter
definition that Hl 1(x)] & F. Now, if x is reflexive (id est

X € Ro(A)), then T(x) is by definition of the action of T also

in Re (A), hence reflexive. But y € C(7(x)) » y = T(x). Hence

y e C(t(x)) » Hyl = Hlt(x)] € F and we get x € M., If x € R, (A)

and y e M+ 1(y) € M for all y ¢ Rg(A) for B <a, then x € M
implies x € M, hence T(x) € M. Thus, by (B), H{T(x)] & F implies
T({x) e M, q.e.d.

Now we return to the proof of Specker's theorem. In the
presence of the axiocm schema of subsets (Aussonderung) the axiom

schema of replacement is equivalent to the schema

NANTeww a e v = w > NNV AN wey~oww

v E 7).
where ®(u,v) is a ZF¥~formula. Now let ¢(u,v) bhe such a formula
with no free varibles other than u,v,x;,..u,xn. Assume that for

X1 5-.-,X_ € M and all u,v,w € M we have that Rel(M,®{u,v)) ~

n
Rel(M,®(u,w)) implies v = w. Let y be a get, y € M. Define

t={ven; V (uey aRel(M,6¢u,v)))}

By the replacementaxiom in ZF, t is a set. Put z = L){T(t}; T € G}.
Again by the replacementaxiom of ZF, z is a set since G is a set.
Further ¢ € M, hence t(t) €M, by lemma 1, thus z € M. Since G
contains the identical mapping: t € z. Further z is G-symmetric,

id est 1T(z) = 2z for all T € G, since as a group G is closed under
products. Hence Hlzl = @ € F, and by (B): z € M. Thus the relati-
vized weakened form of the replacement schema holds. This finishes

the proof of Specker's theorem.

The model.zyl[G,F] was constructed relative to the set A of
reflexive sets such that Q§LIG,F] is a subclass of W(A) = LJGRQ(A).
It is remarkable that neither A nor the elements cof A are always
sets in the model YWLLG,Fl. But in all applications of the Fraenkel-
Mostowski~Specker method we just want to have A as a set in 0§{.
This will be the case if the filter F satisfies the following addi-
tional condition:

(iv) A dxeA~Hxl ¢ Fl
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It is easily seen (see the proof of lemma 1) that for'HwL[G,F] =
(M,e ) and F satisfying (i), (ii)(3ii)(iv), A € M, hence A € M
(since HIA]l = G £ F) by (B), holds.
Further , if F satisfies (1),...,(iv) then in‘yFL(G,FE the weak
axiom of foundation (WF) holds (if in the surrounding set-theory
(WF) holds).

By definition t ¢ Hlx] + tx = x, but T need not to be the

identical mapping on x. Define for any set x:
Kix] = {te6; tfx=1}

where lx is the identical mapping on x and 1[ x is the restriction
of T to x. Remark that always K{x] < H[x} < G, If Hlx] € T then
K[ x] need not to be in F, but if KIx] € F then there is a wellorde-
ring of x in’EﬁL[G,F], if the axiom of choice holds in the surroun-
ding set theory.

Lemma 2: Every 1T € G acts as the identity on the well-founded part
n
M Ljava of M.

Proof by induction on the Mirmanoff-rank p{x) for well-founded sets x.

Lemma 3: (In ZF® + (WF) + (AC)): If G < Aut(V,e) and F is a filter
of subgroups of G satisfying conditions (1), (ii), (iii),
then'UUL[G,F] contains wellordering relations for each
well-founded set x of JYLIG,F]. Hence the axiom of choice
holds in the well-founded part of F¥LIG,F].

Proof. If x is well~-founded, then by lemma 2: H{x] = Klx] = G € F.
Since the (AC) holds in the surrounding set theory x can be mapped
one-to one on an ordinal a. But obviously (by lemma 2) every well-
founded%et of the surrounding set theory is contained in YLI G,F)
(the well-founded sets of LI G,F] are just the well-founded sets
of the surrounding set theory!) and hence a is in 9¥L{G,F] and the
one~-to-one mapping £ from x onto o is also a well-founded set,
hence also in WLIG,F).

Lemma 4: (In ZF® + (WF) + (AC)): If G <€ Aut(V,e) and F is a filter
of subgroups of G satigfying (i), (ii) and (iii) then a
set x of WLIG,F1 can be mapped in YL G,F] in a one-to-
one fashion onto a well-founded set y of J8L{G,F] iff
Kix] € F.
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Proof. a) Suppose that there is such a one-to-one mapping f in
MLIG,F) from x € M onto a well-founded set y € M. Since f € M =+
H f] ¢ F it is sufficient to show that H[f)] <€ K{x] in order to
verify that K[x] € F holds. Hence, take T € H{f] and u € x. Then

() tCu,fuly) = (1Cu), t(fCu))} = {1(u), £(u))

since f(u) € y, hence f(u) well-founded, hence t(f(u)) = f(u) by
lemma 2. But t ¢ H{f) » 1(f) = f, hence {u,f(u) ) € £ + 1({u,f(ul))
€ £, which means by (*): (1(u), f(u)? € f. But f is one-to-one,
hence t(u) = u. Thus 1 € K[x] and H{f] ¢ F, HIf] < K[x] implies by
(ii) K[x] e F.

b) In order to prove the converse, suppose that for some
x € M we have that Kix] € F. Since T¥LIG,F) = (M,e ) is a model of
ZF® the axiom of pairing and union hold in it, and there are subsets
s of x which can be mapped in ?3{ one-to-one onto well-founded sets
of ¥ (e.g. singletons). For each such map fs, s € x, it holds
that Klx] SEH(fS). The set (in the sense of the surrounding set
theory) of functions fs, ordered by "is an extension of" is induc-
tively ordered and has therefore by Zorn's lemma a maximal element
fo. The maximality of fo implies that fo must be defined on the
whole set x (this argument takes place in the surrounding set theory
ZF + (WF) + (AC)). But f, € f, » KIx] < H[f,] < HI[f,]. Hence
Kix] < Hif,] and Hlf,] € F. Since Rg(fp) € M and Dom(fe) = x € M we
infer that f; C M. Hence, by (B), f; ¢ M, and lemma 4 is proved.

Corollary 5: (In ZF + (WF) + (AC)). A set x of the model J¥LIG,F]
1s well~orderable inﬁ?l[G,F] iff K[x) € F.

Proof. If K{x] € F, the there is by lemma 4 in'??t a one-to-one map-
ping £ from x onto a well-founded set y. By lemma 3, y can be well~
ordered.Hence f induced a welloredering of x. If, conversely, x can
be wellordered iJl?Tl, then there is in MWL a one-to-one mapping f
from x onto an ordinal o where f and & are in YU, But ¢ is well-
founded, hence Klx] € F by lemma u.

C) THE INDEPENCENCE OF THE AXIOM OF CHOICE

In the set theory ZF® + (WF) the reflexive sets in the base Ry(A) = A
are all different but not too much distinguished. We shall use this
fact in the construction of a ZF®-model ¥¥L in which (AC) does not hold.
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But in order to ensure that choice fails bq?ft we require that 37L
satisfies some symmetries. These symmetries of ¥l are determined
by the group 6 < Aut(V,e) and the filter F of subgroups of G.
Further suitable choices of groups G and filters F will give ZF°-
models in which the "general" axiom of choice fails but certain

fragments of (AC) are true.

The Model of A.Fraenkel.

We shall present the model constructed by Fraenkel [21] but
with the modifications due to E.P.Specker [82) (see [82]1p.197-198).
We work in a set theory ZF® + (AC) in which there is a countable
set A of reflexive sets such that the weak axiom of foundation (WF)
holds with respect to A, id est V = L)aRa(A). The consistency rela-
tive to ZF® was shown in section A).

Let {ao ,a1 ,31,...} = A be a fixed enumeration of A.

A transposition of A is a one~to one mapping m from A onto A which
interchanges just two elements of A and is the identical mapping
for all other elements. Call a transposition 7 of A "kind" iff =
interchanges a,, with Gopeq If B = {{aZk’a2k+1}; k € w}, then

UB = A and every kind transposition 7 maps B onto itself. Now let
G be the group of those permutations 1 of A which are a finite pro-
duct of kind transpositions. Obviously G is abelian. Let F be the
set of subgroups H of G whose index in G is finite:

F={H; HS G ~ [GiH] <X}

We shall show that F is a filter satisfying conditions (i), (ii),
(iii) and (iv).

Lemma (H.Poincaré): The intersection of a finite number of subgroups
of finite index has finite index.

Proof. Let G be any group and let H; and H, be subgroups of G of
finite index. Elements a and b of 6 lie in the same right coset of
By NH, iff ab™?t ¢ Hi ™ H2. Thus we obtain all right cosets of
Hi © H» by taking all non-empty intersections of right cosets of H
with right cosets of H;. Thus [G:H; N H;] is finite. - The general
case follows by induction on the number of subgroups.

It is well-known that H, < H; < G, then [G:H;] = [G:H, M H;:H, ],
and H< G, g e G +[G:H] = [G:g'lﬂg]. Hence our set F is in fact a
filter, satisfying conditions (i), (ii), (iii). (For the groupthe-
oretical background we refer the reader to "Group Theory" by W.R.
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SCOTT (Prentice-Hall, Inc.New Jersey 1964)p.20).

If a € A, then {G:Hl all = 2 (obviously), hence for all a € A
the groups Hlal are in F and F satisfies condition (iv). Thus the
base A of reflexive sets is a set of the ZF°-model TWLIG,Fl = (M,e) .
Now B € M and since HIBI
set B is a set of WlIiG,Fl.

G € F we infer that also the countable

Lemma. In WLIG,F] the set B = {{a

—_—_—

2k3a2k+1}; k € m}has no ChOice

set.

Proof. Suppose there would be in AMLic,Fl a choice set, say C, of
B, such that C contains precisely one element from each set

{a, a5, ,4}+ Then HIC) would be in F. But the only permutation

T € G which fixes C is the identity. Hence H[C] would be the trival
subgroup E = {e} when e is the identical mapping on A. But E has

infinite index in G, a contradictionte H[C] €F.B is ecountable in ML >
thus:
Corollary: The weak axiom of choice (AC?) saying, that every coun-

table set of unordered pairs has a choice function, is
independent from the axioms of the system ZF° + (WF).

A model of E.Specker.

Again we choose ZF° + (AC) + "there is a countable set A of
reflexive sets such that V = aRa(A)" as surrounding set theory.
Let G be the group of those one-to-one mappings 7 from A onto A
which move only finitely many elements of A, Define F* = {Klt];

t is a finite subset of A} and let F be the filter of subgroups of
G such that F* is a filter-basis of F.Specker shows in [82]}p.198-199
that in the model PWLIG,F] the following holds:

(1) The powerset of A is neither finite nor transfinite (i.e. con-
tains no countable subset). The powerset of A is hence Dede-
kind-finite but not finite.

(2) There is no one-to-one mapping f from A X A into the powerset
of A. Hence the statement /\m(m2 < 2™y fails in Specker's model.

D) THE INDEPENDENCE OF THE GENERALIZED CONTINUUM-HYPOTHESIS FROM THE
ALEPH-HYPOTHESIS

We shall obtain the result mentioned in the heading by constructing
Fraenkel's model in a set theory ZF® + (GCH) in which there exists
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a countable set A of reflexive sets such that V = KJLRa(A) is true.
The following lemma shows that the latter theory is consistent and
can thus be used to construct in it the model of Fraenkel.

Lemma. If ZF is consistent, then ZF® + (GCH) + "there exists a coun-
table set A of reflexive sets such that V = LJaRa(A)" is con-
sistent too.

Proof. If ZF is consistent, then ZF + (GCH) 1is consistent by Gddel's
theorem. Define a permutation F of the universe as in theorem 4 of
chapter 3, section A. It was shown there {(and in theorem 2), that

ZF + (AC) | Rep(F,ZF®) A Rep(F,(AC)Y

Now let x be any set of power ¥, and let PF(X) be the power set of

x in the sense of T, id est PF(X) = {F(t); t C x}. Notice that x

has also in the F-sense power %, . But then x can be mapped one-to-
one onto wy~we = {B; w < B8 < m&}. We may assume that x N (u U {Fly);
Yyew~yYF 1} is empty (otherwise map x onto such a set). Then

the 1-1-mapping f from x onto wy-we is not moved by F. By (GCH)

P(wy-we ) can be mapped in a i-1-fashion onto w ~wo » hence the

a+l
same holds for P(x). But in the model determined by F,wa+1 and

Wy 4 Wo are equipotent and P(x) has in the F-sense power Ha+1' Thus

ZF + (GCH) | Rep(F,(GCH)).

Let A be the set {F(x); F(x) ¢ w*} = {x;F(x) ¢ w'}F.

This shows that ZF® + (GCH) + "there is a countable set A of reflexive
sets” is consistent. But similar to v.Neumann's procedure we may
restrict the universe of all sets to these which lie in some R (A)
without viclating any ZF® -axiom nor the (GCH). The lemma is thus
proved.

Now we proceed in the set theory whose consistency is assured
by the lemma and define in it Fraenkel's model FIL[ 6,F] as in sec-
tion C). It was shown there that the set A is in 131[@,?1 and that
there is no wellordering of A in YIU[G,F] . Hence the (GCH) fails in
Fraenkel's model. The technique for showing that the aleph~-hypothe-
sis (AH): /\3(2 ¢ = R&*l) holds in Wl G,rl is simply by proving
that the model inherits the (AH) from the surrounding set theory.

Lemma. If the aleph-hypothesis holds in the surrounding set theory,
then the aleph-hypothesis holds also in Fraenkel's model.
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Proof. Let x be a set in Fraenkel's model.ﬁUL[G,F] = (M,e } such
that in §8l, x is wellordered and of power Na' Then there is in YL
a one-to-one function f from x onto the initial ordinalwa. But

w, is a wellfounded set. Hen-ce Kix] € F by lemma 4. f can be ex-
tended to a one-to-one mapping from P(x) onto P(wa) by defining
f(y) = {f(2); z € y} for y C x. But again P(w,) is a wellfounded
set. Since the aleph-hypothesis (AH) holds (in the set theory),

there is a 1-1-mapping g from P(ma) onto w Since both sets are

a+l”
in M, we obtain that g C M. But g is wellfounded, hence Hlgl = G € F
and therefore by (B8) (see section B):g is in the model. Thus P(x)

can be mapped one~-to-one onto and has therefore in ?31npower

Na+1, q.e.d.

a+l

Corollary. The statement (PW): "The powerset of a well-ordered set
is wellorderable" holds in Fraenkel's-model, though (AC)
fails in it.

Remark. H.Rubin has shown, that in full ZF the axiom of choice (AC)
is equivalent to the statement (PW) (see: H.Rubin, Notices AMS,
vol.7(1960)p.381, or H.+J.Rubin: Equivalents of the Ax.of choice,
Amsterdam 1963,p.77-78). By our corollary (PW) + (AC) cannot be
proved in ZF® alone: in ZF® the axiom of choice (AC) is independent
from (PW), though both are equivalent in full ZF.

It follows from the result of H.Rubin, that in full ZF the (GCH)
and the aleph-hypothesis (AH) are equivalent. Qur lemma says that in
72F® alone the (GCH) is independent from (AH).

E) THE INDEPENDENCE OF THE AXIOM OF CHOICE (AC) FROM KUREPA'S ANTI-
CHAIN PRINCIPLE

G.Kurepa has considered in his paper "Ueber das Auswahlaxiom", Math.
Annalen 126(1953)p.381-384, the following statement

(KA) "Every partially ordered set {(s,g ) has a maximal antichain".

Here a subset t of s is called an antichain i1ff for x,y e t =+

NUx <y v y < x). Kurepa has shown that in ZF®, (XKA) in conjunction
with the

(0) Ordering-theorem: "Every set can be linearely ordered”

is equivalent to the axiom of choice: ZF® | (AC) « [ (KA) ~ (0)] and
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has asked wether (KA) alone is equivalent to (AC) of not. We have
proved (U.Felgner, Math.Zeitschr.111(1969)p.221-232) that in full ZF
in fact (AC) and (KA) are equivalent (the axiom of foundation is
used in the proof).In contrast to this result J.D.Halpern was able
to show that in ZF® alone (AC) is independent from (KA). The proof
is contained in Halpern's thesis (Berkeley 1962) and not yet published.
We shall work in a set theory ZF® + (AC) in which there is an
infinite set A of reflexive sets such that V = L}aRa(A)'
Let G be a group of permutations of A. If H is a subgroup of
G consisting of those elements of G which leave a finite subset E of
A pointwise fixed, then we say that H has finite support and E is

called a support ("Triger'") of H.

Definition of Halpern's model. Let G be the group of all permutations

of A = Ro(A) (a permutation is a surjective one-to-one mapping).
Let F be the set of all such subgroups H of G which contain a fini-
te-support subgroup. F is a filter of subgroups of G satisfying
conditions (i),...,(iv). Define WFLf=?TL[G,F] as in section B. It
follows that ¥IU satisfies the axioms of ZF® and that A = Rg (A) is
a set of PP such that (WF), the weak axiom of foundation, holds

in WL with respect to A as base.

Remark. Since G is the group of all permutations of A, the supports
of the finite support-subgroups of G are uniquely determined (If

6 would not be the full group of permutations the supports would

not be unique). If H is a finite support subgroup of G we let supp(H)
be the support of H.

Lemma 1. If H,, H, are finite support-subgroups of G, then
grp{H, ,H,} is also a finite support-subgroup of G and
supp(grp{H, ,H, }) = supp(H;) N supp(H,).

Proof. grp{H, ,H,} is the subgroup of G generated by H, and H,, id
est: the smallest subgroup of G containing H, and H, . Define
Hy = {1 ¢ 63 1 leaves supp(H,) N supp(H,) pointwise fixed}

Clearly grp{H, ,H,} < H;. In order to prove the converse consider
T € Hy. Define a = supp{H,;), b = supp(H,) and let

#

a-f(anbdib) = {a,,...,ak}

Let ¢;,...,¢) Dbe distinct elements not in a U tﬁl(b) Ub. Let o, be
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the permutation of A = Ro(A) which permutes a; with c; (1 <i<k)
and is constant otherwise. Then ¢1 € Hy. Let

b-(anb);{b]jt--,bm}

Notice that 011—1(bi) £ a and bi g a (by definition) Let g; be
the permutation of A which maps b, onto G;Ttl(bi) and is constant

for the other elements of A. Hence
01 (b)) = o r“ifbi) and 0, € Hi.
Finally define 63 = TG;ldz. Then

O3 (by) = tﬁfic;(bi) = 16;1011'1(bi) = b

for 1 € i € m. Further, since 1,0; and 6, leave a N b pointwise fixed.
03 also leaves a N b pointwise fixed. Thus o3 leavesib pointwise
fixed and we get 03 £ Ha, But o3 = 16;‘62-¢<t = 30, 0:, thus

T € grp{Hy ,H2} q.e.d.

Lemma 2. If Hixj = {7 € G; 1*(x) = x} includes a finite-support
subgroup, then H[ x] contains a finite-support subgroup
which includes all other finite-support subgroups which
are contained in Hl x}.

Proof. Remember that 1* is the unique extension of T to an automor-
phism of the universe V (see section B). Let I be the intersection
over the set of supports of the finite-support subgroups included

in H{ x}. Since each support is finite, hence I is finite and can

be represented as an intersection of only finitely many of supports.
The group gererated by the union of subgroups corresponding to these
finitely many supports has support I (this follows from lemma 1 and
an ordinary induction), is contained in Hf xland is largest in the
sense stated, g.e.d.

Remark and Definition. If x is in the mocel ¥¥U[6,F], +hen H{x] ¢ F.
But by definition of the filter F, there is a finite support-sub-
group H* contained in H{xl. Thus, by lemma 2, H[x] includes a lar-
geet finite-support subgroup.This subgroup is uniquely determined
and depends only on Hlx] (if x is iJl?FtIG,F]), and we denote this
finite-support subgroup of Hl x] by Holx]. Further we write F(x) =
supp(Hol x1).

We shall prove that Kurepa's Antichain Principle (KA) holds in
DLie,Fl. Since every "abstract" partial ordering € on a set s can
be represented by the inclusion relation C, we may restrict ourself
to the discussion of sets t, where C is the partial ordering on t
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(namely, for x ¢ s define [x] = {y ¢ s3 vy <x} and t = {[x}} x € s},
then (s5,<) and (t,C ) are isomorphic).

Lemma 3: (KA) holds in Halpern's model WILIG,F}.

Proof. Let t be a set of ¥ = Y¥l{c,Fl, and define
Z={y;3yCta~yec ?WL ~ F(y) C F(t) ~ y is an anti-chain}.

Z is a subset of the model ML but not necessarily 2 e Y. We want
tc prove that Z has maximal elements.

If T is a subset of Z, totally ordered by C, then UT is again
an antichain. Further HH U T] = (Y{H{yl; v ¢ T} and always:
y e Z > He[t] < Holy] < H[y] where Ho[t] ¢ F. Thus HI\J Tl ¢ F.
Since T € Z € WL, hence UT C WL by the transitivity of UL and
therefore {JT ¢ TEL (see (@) and (B) in section B). Finally:
Holt] < HLU T] + Holt] < Hol WU T), thus (by lemma 1):
FCUJT) C F(t). This shows that \J T ¢ Z. Since Z is inductively
ordered by € there is in Z by Zorn's lemma a maximal element, say
yo,in Z (notice that z # ¢, since F(#) = # C F(t), hence 8 € 2Z).
We want to show that yo is maximal among all antichains of (t,C) in
THL.

Suppose yo is not a maximal antichain of (t,C) in‘?zt. Then
there is an element y € t - yo such that yo Y {y} is an antichain.

Let Vi = yo YV {1*(y); T € Holtl}.

Then Hel t] = Hlyol implies Helt] € Hly;1. Since Helt] ¢ F therefore
Hy,] € F. Since yo Cy;, €t C 0 therefore y; € Wl (by (8) in
sect. B). On the other hand Helt] < Hly,] implies F(y,) € F(t).

y1 cannot be an antichain, since otherwise yi € 7 contradicting the

maximality of yo. Hence y; must have two comparable elements. We
have two cases:

Case 1: There are z € yo and 1T € Hol t] such that z C t*(y) or
™(y) € z.

Case 2: There are T;,T; € Hol{t]l such that 1J(y) # 1*(y) and
T (y) € 13(y).

If case 1 holds, we have (1—1)‘(2) CyoryC (t"H*(z). But
T € Holt]l < Helyo) < Hlyol and z £ yoimplies (t"H) € y. This
contradicts the fact that yo Y {y} is an anti-chain.
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If case 2 holds, put T = Tfitz. Since Holtl 1is a group:
T € Holt] and we obtain the existence of T € Holt]l such that
y #1*(y) and y C 1*(y). We want to find a me € w such that Tm°‘(y)=
y. Hence it is natural to lock at:

Dy

it

{w e F(y); \/n(o <n o~ t™w) = w}

D2 {ZEA-'-RQ(A); \/w\/niwel}; "Tn(W} = z]}.

i

1" means n-times iterated application of 1. Since F(y) is finite,

D: is finite too. Further D; is finite since w € D; implies that
after a finite number of successive iterations of T one comes back

to w. Thus D; is finite since Dy is finite and every element w of

D: has only finitely many images under successive iteration of 7.
Also, D is closed under T. Thus D; together with t[ D2 is a permu-
tation group. Since T is a one~to-one mapping on D;,the finite cycles
5, = {2,1(2),1%(2),...} are either equal of disjoint and form orbits
of the permutation group {D;,t" Dy} = Q}. The group is hence

the direct sum of these cyclic groups. Let ne be the order of @} .

If z € F(y) -~ Dy, then 17(z) is never in D; (and there is a finite
numver n, such that m > n, implies ™(z) £ F(y) {(since F(y) is finite
and 1™(z) #* z for all n > 0). Let mo be the first multiple of ne
strictly greater than Max{nz; 2z € F(y) - Di}. Then

m )
T°(w) = w if w € D,

since my = k'no for some k € w and the cardinality of the orbits

of Q} devide the order of . Further by definition of me:

z € F(y) — D, =» n_ < me, hence tT®(z) £ Fly). Thus if 2z ¢

F(y) 0 {a™(w); w e F(y)} then 17°(z) = z.

We define a permutation o of A = Re(A) which maps X = F(y) onto
{t™(2); z ¢ F(y)} by o(x) = t™(x) for x € X, o(u) = x for

1™ (x) € Y and o(v) = v otherwise. ¢ is well-defined since on

X 1Y we have that o is the identity as was just proved above.
From o(z) = 17°(z) for z ¢ F(y) we obtain

(1) o*(y) = (t™)*(y)

since o F(y) = t™ ] F(y), hence o 1t™ ¢ Holyl < Hiyl, thus
(c'izm”)*(y) =y, id est a*(y) = 1™ (y).

Mg

Since also o7 is the identity on F(y) we obtain in a quite

similar way from o(1"°(z)) = z for z e F(y):
(2) g*(t™)*(y) = y.

By hypothesis y C 1*(y), and since t* is an automorphism, we have
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(3) v Cr(y) € {12 (y) C...C (7)) (y).

Thus by (1): y € g7(y). But (3) also yields o*{y) C o*(t™)*(y).
Applying (2), we have 0*(y) Cy. Thus y = o*{(y). From (1) we
deduce y = (tn%)*(y). Finally, from (3), we arrive at the contra-
diection y = t*(y) and lemma 3 is proved.

Let (AC;) be the axiom of choice for families (= sets) whose
elements are couples (= unordered pairs). Instead of proving that
the (unrestricted) axiom of choice (AC) does not hold in Halpern's
model PO, we Thall show that already (AC,) fails in Y0L.

Lemma 4: The weak axiom of choice (AC;) does not held in Halpern's

model FYLIG,F].

Proof: Let Y = {z; \él\é(u,v € A= Re(A)Y ~u#Fv ~ z = {{u,vi,
(v,ud)I)}. A = Ry(A) is a set of Yl as was noticed previously.
Thus ¥ C 33[, But Y is closed under G, thus H Y] = G ¢ F. Hence,
by (B) of section B, Y is a set of the model YUV . Also z ¢ ¥ implies
z = 2 and distinct elements of Y are disjoint. Suppose there would
be a choice set C for Y ianEL, id est /\w[w e Y+ wNC has car-
dinality 1] and C e 70l . It follows H[C] € F and F[C] is a finite
subset Of the infinite set Ro(A). Pick elements u,v & Ro(A) - F(C)
such that u # v. Let 1 be the permutation of Re(A) which interchanges
u and v and is the identity otherwise. Then T £ He[C] < HIC], hence
7*(C) = C, and y ={{u,v ) ,{v,u )} & Y. Supposelu,v) € C, then
*{u,v ) =(v,u) ¢ 1*(C), hence {v,u?) € C: a contradiction. If
{v,u) e C then one concludes similarly that (u,v ) €& C, again con-
tradieting the assumption on C. Thus Y has no choice set in Wvl,q.e.d.
This finishes the proof, that in Halpern's model ‘F¥I[G,F] all
axioms of ZF, Xurepa's Antichain Principle (KA) and WAC,) are true.
As a

Corcllary (J.D.HALPERN): The axiom of choice (AC) does not follow
from Kurepa‘s Antichain-Principle (XKA) in ZF°.

Remark. Since (AC,) fails in Halpern's model JIl , the ordering prin-
ciple (0) fails in YTV too, since ZF® |~ (0) + (AC,). Further ZF° |-
(BPI) » (0) (via compactness-theorem of the lower predicate calcu-
lus, e.g.) where (BPI) is the Boolean Prime Ideal theorem "Every
Boolean algebra has a prime ideal'. Stone (Trans.AMS vol.40(1936)
p.37-111) has shown in ZF® that (BPI) is equivalent to the "Repre-
sentation Theorem for Boolean Algebras": "Every Boolean Algebra
{(B,U ,M , 1) is isomorphic to a set-algebra {(C, U, N, - )",
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The statement
(SPI): "Every infinite set algebra has a non-principle prime ideal"

follows from the (BPI). Tarski has asked, whether (SPI) »+ (BPI) is
provable. Halpern has shown, that in ZF° this implication is not
provable. Halpern shows that in the model above the (SPI) holds
while the (BPI) fails in it.

Lemma 5 (U.Felgner M.Z. 111(1969)): Kurepa's Antichain Principle
(KA) implies in ZF? the statement (LW) which says that
every linearely ordered set can be well-ordered.

Proof. Let (s, <) be a linearly ordered set. The powerset F(s) of
s is a set of chains.By a theorem of Zermelo (Math.Ann.65(1908)p.
261-281, thecrem 28) there is a set K whose elements are pairwise
disjoint, such that there is a one-to-one mapping f from P(s) ~ {8}
onto K with the property that for 8 # t ¢ P(s), f(t) £ X is isomor-
phic to t. Thus P(s) is represented isomorphically by K, but K is

a set of pairwise disjoint chains. A maximal antichain C of Uk is
a choice function which selects from each chain just one element.
Thus we get a choice function g defined on P(s) - {B}. By Zermelo's
well-ordering theorem (Math.Ann.58(1904)p.514~-516, or 65(1908)p.107-
128) the set s can be wellordered, q.e.d.

Thus (LW) holds in Halpern's model ¥l too. Since ZF®} (LW) +
(PW), we have strengthened our result in chapter D: in ZF® the (AC)
is independent from (LW). Purther, Felgner proved that (IW)—> (KA) is
mot a theorem of ZF° .

F) THE UNDEFINABILITY OF CARDINALITY IN zF°

One says that the sets x and y are equipotent (or equinumerous),

in symbols x ® y, iff there is a one-to-one function mapping x on

yv. The notion of the c¢ardinal number % of x is obtained from aqui-
potency by abstraction. In the presence of the axiom of choice (AC)
the term X can be defined to be the least ordinal o egqguipotent with
x. If we do not have (AC) but the axiom of foundation, we are still
able to define adequately %3 la Frege~Russell-Scott:

i = {y; y=x ~ /\Z(z =~ x =+ ply) < p(z))}

where p is the Mirimanoff-rank function (see chapt.Il,sect.E). Here

% consists of sets y of lowest rank equinumerous with x (see D.Scott:
Definitions by abstraction in axiomatic set theory, Bull.AMS 61(1955)
p.442, and
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[#4] Dana SCOTT: The notion of rank in set-theory; Summaries
Summer Institute for Symbolic Logic, Cornell Univ.1957,
p.267-263),

We remark, that even in the absence of both the axioms of choice and
regularity but in the presence of either the weak axiom of foundation
in the form "there is a set A such that V = LJaRa(A)" or the axiom
(U.Fg.,Archiv d.Math.20): "the universe V can be covered by a well-

ordered sequence of sets s & an ordinal”. We shall show that in

a’
ZF® without any additional covering axiom {like foundation, etc.)
there is no adequate definition of the term X. This result was ob-

tained first by Azriel Lévy

[60) A.LEVY: The Definability of Cardinal Numbers; in: "Foundations
of Mathematics”, Gddel-Festschrift, Springer-Verlag Berlin
1969,p.15~38.

Alsc R.J.Gauntt has obtained this result (independently):

{22] R,J.GAUNTT: Undefinability of Cardinality; Proceedings of the
U.C.L.A.~set Theory Institute 1967. To appear in 1970.

In the presentation of the proof we shall follow mainly R.J.Gauntt
but in few details A.Lévy.

When one considers the question of whether one can define in ZF°
the cardinality operation X, the following possibilities turn up:

(a) x_is definable in a set theory ST: there is a term t(x) of ST

with the only free variable x such that
ST P—/E{py[t(x) = t(y) ¢ x = y]

(b) X is relatively definable in a set theory ST: there is a term t(x,

z) of ST with the only free variables z and x such that
ST b \é /2>/§[t(x,z) = t(y,z) #+ x = yl.

Obviously (a) entails (b) (L8vy [50] considers further possibilities).
If we take ZF® + foundation (id est ZF) or ZF® + (AC) as set ‘theory
ST, then (a) holds. We shall prove a strong undefinability result,
namely,that even (b) dces not hold for the set theory ZF°.

Theorem (Lévy,Gauntt): If zZF® is consistent, then so is ZF°plus the
schema

(*) "I\/X/\a%wcy,a,x) ~ /\b(a = b e ¢{y,b,x))].
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Proof. If ZF® is consistent, then also the theory (called ZEV) ZFO+
"there is a proper class A of reflexive sets equinumercus with On (the
class of all ordinals), such that for every x there exists y € x with
either y N x = @ or y ¢ A" is consistent (see the results of Chapt.III,
sect.A). Hence there is a function G (a classterm) mapping On one-
to-one onto A. We will now construct within this universe a Fraenkel-
Mostowski-Specker model 8L of ZF® plus the schema (*). - In the
sequel the elements of A are called atoms.

Each ordinal a can be written (in a unique way) as B + n where
B is a limit ordinal and n € w (this follows from Cantor's normal-
form theorem). Define o = 0 iff n = 0 (congruence modulo 2) for
a =8 +n ~ Lim{B) ~ n ¢ w, and define a = 1 iff n = 1 modulo 2
for a = B + n ~ Lim(B) ~ n ¢ w. The ordinals congruent o are thus
0,2,4,...,w,w+t2,0+4,,,. and the ordinals congruent 1 are 1,3,5,...,
w+l,w+3,... For each ordinal a, {G(a),G(a+1)} is a pair of atoms
and if a = o then /\J[B = 0 » a # 8 » {6(x),6(a+1)} N {G(B),G(B+1) =
a) .

1

Definition. F(a) = {G(R); (B =0 AR <a)w (BR=1A"8<a)}.

The following definition is due to D.Mirimanoff (L'Ens.Math.vol.17
(1%17)p.33 and p.211).

Definition. Ker(x) = C{x) M A = the set of atoms in the transitive

closure of x.

(read: the kernel of x; Mirimanoff used the term "noyaux").

We now restrict the universe to elements of sets built up from F(a)'s,
i.e. V = (JQ(LJYRY(F(a))). That is, the restricted universe consists
of all x for which \cx\[y(x €y ~ Ker(y) C Fla)).

k}YRY<?<a>> L)YRY(F(B))
e.g. for a < 8:
[1 - > A

¥io) Atoms

\ J

~
F(B)

Notice that each F{a) is s set and k)aF(a) = A, where A is a proper
class. For each permutation f on F(a), define f(x) over the entire

(restricted) universe as follows:
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F(x)
f(x)

x for atoms x not in F{a),

n

{f(y); y & x} for sets x.

This definition is welldefined since if x is in the restricted
universe, then x C Ry(F(ﬁ}) for some ordinals 8 and vy [ for the
definition of RY(a) see p.53]. By induction hypothesis it is
assumed that f is defined for all vy ¢ Ré(F(B)) for 6 < y and
all 8.

Definition. A permutation f on F(a) is called semi-admissible
iff it preserves pairs, id est, for all B < a such
that 8 = 0 there exists y < a such that v # 0 ‘and

£C{G(B),6(B+1)}) = {G(Y),G(y+1)}.

Definition. A permutation f on F(g) is called admissible iff
it fixes pairs, id est: for all B < a such that
8 ¥ g it holds that
£C{G(R),G(B+1I}) = {G(B),G(B+1)}.

Definition. x is symmetric ® there is a finite set a of atoms
such that each admissible permutation 1 which leaves

a pointwise fixed, fixes x (not necessarily pointwise!).

Definition. Sets of the model 9L are those sets x which are here-
ditarily symmetric (id est: x and every element y of

the transitive closure of x is symmetric).

Digression. Notice the similarity of the model 99T just defined
with Fraenkel's model in section C. The admissible permutations

of F(w) are called there "nice". But there is one important diffe-
rence. In the definition of a symmetric set x we avoided the use
of the notion of a finite support subgroup K[ a] and in the defini-
tion of the model F¥U we avoided the use of a filter of subgroups.
This is done since the permutations are already proper classes.
Hence the groups K[ alwould be totalities of proper classes and

the filter F a collection of those totalities. It is possible to
formulate a type theoretic extension of ZF-set theory in which
sets can be collected to classes (3 la v.Neumann-Bernays-Gddel)
and in which classes can be collected to totalities, totalities

to systems etc (in which the predicates "set", "class", "totality®
"system",... are primitiv) using an idea of I.L. Novak~-Gal (Fund.
Math. 37(1951)p.87-110). In such a set theory one can talk about

the groups Klal, the filter T, etc. But since in the discussion
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above reference is made only with respect to one single class of
permutations f of the sets F(a) we could restrict ourself to men-
tion only permutations of certain type. The use of the notions
"subgroup", "filter" would make only linguistical differences.
Further remark that a permutation of the class A of atoms moves
only elements which are in some F(a). Hence the "essential" part
of a permutation on A is a set. This explaines that in the defini-
tion of a symmetric set we have quantified only over sets (thus
class-variables to range over permutations on A are not needed).
The formulae: "x is symmetric" and "x is hereditarily symmetric®
are thus ZF-formulae. Thus UL - {x; x is hereditarily symmetric}
is a class-term of ZF.

The following lemmata are easily proved. The proofs are similar
to those of section B.

Lemma 1. (In 7rV Y+ If £ is semi-admissible and g is admissible,
then f_lgf is admissible.

v

Lemma 2. (In ZF' ): x e J8L * (x P ~ x is symmetric).

Lemma 3. (In ZFV

}: No two disjoint infinite sets of atoms are
equinumerous in F0T .

suCh
Proof. Suppose the lemma is false. Then there arelinfinite sets x

and y and a one-to~one function g, mapping x onto vy, in 9L . Since
X,y and g are symmetric, there are finite sets a,b,c of Atoms such
that every admissible permutaticon w leaving a (resp. b,c) pointwise
fixed, fixes x (resp. y,g). If G{(a) € x - a for ¢ = 0, then

G(a+1) € x. Now pick & # 0 such that G(a) € x -~ {a Ub U ¢). Since
g maps x onto y, g(G(a)) = G(B) € y and g(G(a+1)) = G(y) € y. Thus
(G(a),G(B) > € g and (G(a+1),6(y) ) € g. Take an admissible permu~-
tation ® which interchanges the atoms G(a) and G{a+1) but is the
identity otherwise. Since x and y are disjoint, 7 acts as the iden-
tical mapping on y. Thus m({G(a),G(B8) Y ) = (7w (G(a)),G(B) ) =
{G(a+1),6(RY Y € 7(g) = g since T leaves c pointwise fixed. Hence
g(G(a+1))= G(B), a contradiction, g would not be one-to-one, g.e.d.

Lemma 4. {In ZFV ): Any permutation on FT(a), which moves only
finitely many atoms, is in WL .

Proof. Let a be the finite set of atoms moved by the permutation .
Then every admissible permutation 1 which leaves a pointwise fixed
maps w onto itself.
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Lemma 5. (In ZF' ): For each x and semi-admissible permutation w,

x e L e n(x) e 3WL .

Proof. Use lemma 1 and lemma 2 and proceed as in the proof of
lemma 1 of chapt. III, section B, page 55-56.

Lemma 6. For each ZF-formula @(xi,...,xn)vwith n free variables,
the following are theorems of ZT :
(i)} 7 semi-admissible -+ {@(x,,...,xn) N @(W(x,),..,ﬁ(xn})}
(ii) 7 semi-admissible + [Rel (9L ,o(x, seeesx )) ®

Rel( WL ,0(n(x, ),...,ﬂ(xn)))] .

Here Re1(331,¢) is the formula obtained from ¢ by restricting all
quantifiers to the class §#U (see chapt. I, page 14). The proof is
by induction on the length of ¢, using lemma 5.

Lemma 7. (In ZF° ) WL is (with respect to £) a model of ZF°.

The proof is like the one of Specker's theorem (in section B, p.5#4)
using lemmata 2, 5 and 6. Do not take the "hyper-classes" of all
one-to~one mappings from A onto A, but take only the groups of ad-
missible permutations on the sets F(a). These groups are sets!

For every set x in the restricted universe only an initial segment
F(a) of the class A of atoms is essential (definite).

Lemma 8. For each ZF-formula ¢(x;,X; ,x3) with three free variables,
the following is provable in ZFV:
Re1 (I, V, A W leva0 A A @ = b+ aym,000.
Proof. Suppose that the lemma is false. Then there is a ZF-formula
¢(x; ,X2 ,%x3) and a set x in T as required above. Since x is in 9L,

hence in the restricted universe, there is an ordinal & such that

Ker(x) € F(a), where o = 0 can be choosen. Define
Dy = Floa+tw) - F(a).

Cleary, D; ¢ . Suppose y is the (unique) cardinal of Dy, where
y e TIl, id est Rel(FTL,8(y,Ds,x)).

Case 1. Ker(y) C F(a).

Case 2. Ker(y) € F(a).

If case 1 holds, define Dy = Fl{at+tw.2) - Flo+w), where w.2 = w+w,
Then D, e'ﬁﬂi, There is a semi-admissible permutation m of the atoms:
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m(G{a+n)) = G(a+w+n)
{G{a+w+n)) = G{o+n)
n(G{B)) = G(B) for B < a or a+w.?2 = B8,

Thus 7 fixes each element of F(a) and takes D; onto D:;. Hence
7(Dy) = Dy, WD) = Dy, m(x) = x and #(y) = y. Then

Re1( M ,0(y,Dy ,x)) © Rel (WL, 0(n(y), 7(D1), T(x))) *©
Rel( 277 ,8(y,D2 ,x))

Hence y is also the cardinal of D;. Thus Rel(?¥ ,D: = D;) violating
lemma 3.

If case 2 holds, there is an ordinal B 2 o such that
G(B) € Ker(y) ~ G(B) ¢ F(u). Pick an ordinal v,y = B8, v 2> B, and
define a permutation T on Dy Y F(Y+1) which interchanges G(B) and
G{y) and interchanges G(B+1) with G(y+1) iff 8 # 0, and interchanges
G(B-1) with G(y-1) iff B = 1. Since & = 0, hence G(8§) € F(a) =~
§ <a, T fixes all elements of T(a). Thus T(x) = x. T moves Ker(y)
and hence t(y) ¥ y. Clearly T is semi-admissible. Hence by lemma 6:

Rel( 0L ,0(y,D;y ,x)) © Rel( WL, 5(1(y),T(Dy ) ,x)).

Thus 1(y) is the cardinal of 1(D;). Since y is the cardinal of D
and 1T(y) ¥ y, D and T(D:) have different cardinality and are there-
fore not equinumercus in 99T . But by lemma 4, T is a set of FIL

and is a one-to-one function in the sense of 9L . Thus D1 and T(D1)
would be equinumerous higgi, a contradiction. Lemma 8 is thus
proved,.

The theorem of Lévy-Gauntt follows directly from lemmata 7 and 8.

G) A FINAL WORD

The main idea behind Gddel's construction of the model {L,e ) of

ZF + (AC) was to make all sets of the model definable (or nameable)
by means of a certain complexe language. The natural (inductively
defined) wellordering of the language induced a wellordering of the
model-class L. The main idea behind the construction of ZF°-models
P in which choice fails is to guarantee that 9 contains infini-
tely many sets of "indiscernible" sets. Then there is no reason
why a function f defined on a infinite set of sets of mutually
indiscernible elements should choose from each set just the cne

and not the other element. This was made precise by introducing

the groups G of permutations on some infinite set A = Ro(A) of
"atoms" (reflexive sets) and the filter F of subgroups of G.
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The symmetries of the model 331 are determined by F. If x is in
A¥Land. x = {1(y); T € G} for every y € x, then x is a set of in-
discernibles in % . In Fraenkel’s model (see this chapter, section
C) the sets {an’&2k+1
B of these sets of indiscernibles is the set-theoretical counter-

} are e.g. sets of indiscernibles. The set

part to Russell's sequence of pairs of (mutually indiscernible)
socks.

The "classical® way for obtaining those families of sets of
indiscernibles was to take an infinite sequence of "urelements™ or
"reflexive gets" and to take a certain nice permutation group which
acts on them. The choice of the right permutation group and the
right filter of subgroups is the alpha and omega in all applications
of the Fraenkel-Mostowski-Specker method. The filter T defines on
the group G a topology. If in the surrounding set theory the axiom
of choice holds and the weak axiom of foundation such that the
atoms form a set, then the corresponding model ?31{6,?} satisfies
the (AC) iff the topology is discrete (it is supposed that the
filter F satisfies conditions (i),...,(iv)), and then the model
coincides with the whole universe of sets. Thus, in order to get
non~trivial applications of the FMS-method, the filter F has to
contain never the trivial subgroup {1} of G.

In the next chapter we shall describe Cohen's forecing method.
This method applies to full ZF-set theory and yields not only inde-
pendence results "below" the (AC) but also the independence of V = L
from the (GCH), the independence of (GCH) from (AC) and lots of
further results. Again it is possible to introduce in Cohen-models
indiscernible sets by destroying the (AC). We remark that it is
even possible to construct ZF models in which V = L holds and
which contain indiscernibles, but then one has to assume the exis-
tence of large cardimals K satisfying the partition relation
K ﬂmﬁ(UV):u) , See J.Silver’s paper: A large cardinal in the con-
structible universe, Fund.Math.69(1970)p.93-100,
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Additions to chapter III

1)

2)

3)

4)

The part Kixl e F then there is a one-to-one mapping from x onto
some well-founded set, of lemma 4 in section B, p.57-58, can be
trivially proved as follows.

If K[x] € F then x is wellorderable in U0L[G,Fl; namely let w
be any wellordering of x, then w CY¥LIG,F]. But obviously Kl x] <
Hiw], thus w € JYLIG,Fl. Thus x is wellorderable in PTL and there
are 1-i-mappings from x onto some ordinals in JOL . But ordinals
are well-founded sets, Q.E.D.

The corollary on p.62 which says that (PW) holds in Fraenkel's
model ¥ can be stregthened by asserting that even (LW) holds in
U1 while (AC) fails. Proof. Let (5,€) be a linearily ordered set
inTU. Define R = {{a,b); a,b e s ~ a < b}; thus_H[R] € F and
HIR} < H s]. We claim that for each y € s it holds that HIR] < Hlyl.
Suppose not, then there are y € s and a t € Hl Rlsuch that 1(y) # y.
But t(y) € 8 and R is a linear ordering on s, thus elther
{y,t(y) > € Ror (t(y),y ) ¢ R. If (y,t(y)? €& R, then
T((y,t(y) ?) = (t(y). .12 (y) ¥ = C1(y),y } € t(R) = R, since T%= 1.
But {y,1(y) > € R ~ {1(y),y? € R yields y = 1{y), a contradiction!
The same argument applies to the case (1(y),y ? € R. Thus every T €
H{ Rl leaves s pointwige fixed, Thus, if w is any wellordering
relation on s, then B[R} < Hlw] and it follows that w e ddL, g.e.d.

It holds that ZF° | (AC) + (LW) -+ (PW), while ZF | (AC) # (LW) ¢ (PW).
We have shown under 2) that (LW) + (AC) is not provable in ZF°.

Using the model of Mostowski [64] one shows that (PW) + (LW} is not
provable in ZF®. Let us indicate that obviously Kinna-Wagners prin-
ciple of choice of proper, non-empty subsets cannot hold in Mostow-
ski's model, since (PW) holds in it and otherwise (AC) would be

true in it (see Mostowski: Colloqu.Math.6(1958)p.207-208). Let us
note further that J.D.Halpern has sghown that in Mostowski's model
the Boclean prime ideal theorem (BPI) holds (Fund.Math.55(1364)
p.57-66.

Finally we refer to some impertant papers in which the FMS-method

is applied: E.Mendelson [61] ,[62} , and:

A.Mostowski: On the Principle of Dependent choicesi;Fund.Math.35
(1948)p.127-130: [68].

H.Lauchli: Auswahlaxiom in der Algebra; Comment.Math.Helvetica 37
(1962/63)p.1-18.
H.L3uchli: The Independence of the Ordering principle from a res-

tricted axiom of choice; Fund.Math.54(1964)p.33~-43,



